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In Part 1, the theoretical formulation of a numarical solution to
electromagnetic seattering problems encompassing arhitrarily ori-
ented, three-dimensional axisymmetric perfectly conducting or di-
electric objects embedded in an axisymmetric dielectric obstacle
has been developed in a form suitable for an efficient computer
solution. Here, numerical results for a wide variety of scatterer con-
figurations are presented in order to demonstrate the validity and
accuracy of our generalized point-matching technique formulation.
Whenever possible, the Mie theory, the extended Mie theory, the
homogeneous extended boundary-condition method (EBCMI, the
multilayered EBCM, and the Rayleigh-Gans-Debye approximation
have been used in the process of examining the applicability of
the suggested method. In all of the cases considered, excellent
agreement has been achieved. + 1995 Academic Press. Inc.

L. INTRODUCTION

Using the analytical formulation presented in |11, a versatile
compuler program has been developed in FORTRAN 77 for
the HP-UX 8000 computer. For a given scatlering geometry,
the expansion coefficienis of the spherical vector wavefunciion
expansions for the internal and scattered field vectors, the angu-
lar scattering patterns, and the various cross sections of interest
are evaluated For two principal orthoponally polarized compo-
nents of the incident ficld vector, the programs have been
conligored to produce solutions (o clectromagnetic (EM} scal-
tering problems involving cither axisymmetric homogengous
periectly conducting (PC) or dielectric scatterers or PC or di-
electric obstacles embedded in a dielectric coating, both with
and without a plane of symmetry perpendicular to their axis of
rotational symmetry. In order to obtain a satisfactorily correct
solution for a given scatterer in an arbitrary orientation, a suffi-
cient number of terms must be incorporated into the truncated
expansions of the internal and scattered field vectors, depending
on the desired accuracy. Since computational time is directly
related to the length of the expansions o be included, it is
essential to devise an algorithim whereby the minimum upper

muodal indices Ay aud Ny, which are not Knowar o priori, required
[or a satislactory convergence can be determined reliably. Ex-
cess azimuthal and/or elevation modes are capable of degrading
the convergence and should be avoided as they may introduce
errors in the final solution, especially if they are inaccurately
computed.

The scheme Tollowed for the determination of the minimum
upper modal indices A, and N, is similar to the one implemented
by Barber and Hill [4] in their extended boundary condition
method (EBCM) code and consists of two separate parts. First,
the elevation ), and azimuthal ¢, orientation angles of the local
frame are both set to zero; i.c., the case of an axial (nose-
on) incidence, with no cross-polarized scattered wave being
generated, is imposed. Therefore, only the aximuthal mode
ar = | is included and &, is then determined for this symmetric
oricntation, starting from an initial truncation estimate which
is taken as the integer closest to kyaf/2, where ¢ is a typical
maximum linear dimension of the scatterer. Convergence is
taken in the Cauchy sense; i.e., accuracy is based on the criterion
of the relative constancy of the various scattering parameters
when two successive elevation modal indices result in a speci-
fied percentage difference [7]. From our computational experi-
ence, it has been concluded that the number of significant
clevation modal indices is determined mainly by the shape and
size while it is weakly dependent on the constitutive parameters
of the scatterer.

Once the truncation size M, has been determined, a general
orientation, for which a cross-polarized component will be gen-
erated, is considered next by setting @, = ¢, = 45°. With n
fixed at Ny, the number of significant azimuthal modes M is
similarly obtained. Although N, is the theoretical upper limit
for m, it has been observed throughout the course of computa-
tions that convergence over the azimuthal modal index #r can
quite easily be achieved without necessarily summing over all
the elevation modei indices.

In all cases to be presented, the set of numerical results given
has been obtained for a total number of boundary-matching
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points which 1s chosen at a given azimuthal modal index
such that the total number of boundary-condition equations is
overspecified by a factor of 2, 1e, L, = 2 [Ny — m + 1 —
5;::(])-

The majority of our graphical results describes the behavior
of the differential scattering cross-section patterns, normalized
by wa?, where a is a characteristic dimension along the axis of
rotational symmeiry. Results evaluated from the generalized
point-matching technigue (GPMT) are displayed at one-sixth
degree increments while those obtained from the EBCM
{51 or Rayleigh—Gans—Debye (RGD) approximation [6] are
computed at 10° intervals. For some selected cases, three fixed
scatterer orientations have been considered, 4, = ¢, = (°,
6, = ¢y = 90° and 8 = &, = 45°. Throughout this paper,
the scattered electric field vector has been evaluated for two
orthogonal polarization directions of the incident wave. In pres-
enting the angular scattering results, the convention which has
been followed is based on the fact that since, when no cross-
polarized scattered wave is generated (6, = ¢5 = 0°and 6, =
dy = 907), the co-polarized patterns which are mirror images
about ¢ = 180° are given for 0° = #, =< 180°. For ) = ¢ =
45°, a cross-polarized component exists and therefore the whole
asymmetric patterns are consequently displayed. Unless other-
wise stated, the scattering parameters as computed from the
GPMT and the EBCM are accurate within at least 1%, which
seemed to be appropriate for the cases to be presented, bearing
in mind the high cost of accormplishing convergence if higher
accuracies are demanded.

. NUMERICAL RESULTS

L. Homogeneous Scatterers

The programs were first run for the simple case of lossy and
lossless dieleciric spherical scatterers [2] and certain parameters
were varied to determine their effects on the results. However,
by using a mathematical artifice, this initial evaluation has been
extended to a nontrivial test whereby the expected levels of
accuracy for homogeneous nonspherical scatterers can be in-
ferred [8]. This is achieved by moving the origin of the local
frame off ceater along the z-axis by a distance d (—a < d <
), where a 1s the radius of the sphere, and thus, mathematically,
the scattercr appears to be nonspherical since the radius vector
and its derivative with respect to the polar angle # are now
functions of the angle 8. As expected, the programs should
provide the same far-field scattering solution irrespective of
the value of d, and therefore the required increase in the number
of elevation modal indices, because of this sufficiently general,
nonmirror symmetric shape provides an indication of the con-
vergence of the results when dealing with other general non-
spherical scatterer shapes. A representative case of these calcu-
lations is displayed in Fig. 1.

The second geometry to be considered is that of the largest
and, hence, the most eccentric, oblate spheroidal raindrop with
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an equivolumic radius of 3.25 mm and an axial ratio, a/b =
0.675, where a and b denote the length of the semi-minor and
semi-major axes of the scatterer, respectively. The computa-
tions were performed for a raindrop temperature of 20° C and
at a frequency of 300 GHz with a relative dielectric constant,
g, = 54384 + j4.2005. The purpose of this test is twofold.
First, the applicability of the GPMT to homogeneous lossy
dielectric scatterers of large size parameters, kb = 23.28, which
were not previously considered, is demonstrated. Second, the
capability of the GPMT to yield accurate scattering patterns,
generated from an arbitrarily oriented scatterer, for both the
co- and cross-polarized components is verified even for values
at deep nulls, despite the tact that they are relatively very small
numbers and, hence, are susceptible to computational roundoft
errors. Typical results of our scattering computations are shown
in Fig. 2, Tt s evident from the results of the lossy oblate
spheroidal scatterer test that an excellent consistency between
the results of the GPMT and the EBCM has been achieved
where typical differences are less than 1%.

The next scatterer shape to be considered involves a homoge-
neous lossless dielectric prolate sphercid of relative dielectric
constant, &, = 2.25. Typical scattering calculations are shown
in Fig. 3 for a/b = 2 and for two size parameters, kya = 30
and 37.699, which at a frequency of 30 GHz corresponds to a
major axis length of 954929 mm and 120 mm, ie 2a =
14.3239A and 135A, where A is the wavelength index of the
dielectric abject.

The excellent agreement attained thus far has led ro the
consideration of further assorted cases of axisymmetric scatter-
ers which do not possess an equatorial plane of reflection sym-
metry. In the following, the scattering by the realistic raindrop
shapes as derived by Pruppacher and Pitter {9] {P-P) will be
considered. It is interesting to mention that Yeh ef al. [10]
claimed that of the different analytical and numerical scattering
technigues available, only the EBCM and the finite element
method (FEM) are capable of providing reliable results in the
resonance region with little uncertainty. However, we have
conducted extensive comparison tests between the GPMT and
EBCM for scattering from P-P raindrops, the results of which
reveal the important conclusion that, although the EBCM has
been widely believed to be applicable to arbitrarily shaped
dielectric scatterers of large volumes [11, 12], the numerical
behavior of the EBCM degrades significantly when dealing
with scattering geometries which do not possess a mirror sym-
metry in the direction of the normal to the axis of revolution.
In fact our extensive numerical experience with the programs
of Barber and Hill [4] showed that the EBCM was unable to
provide a convergent solution over the entire scattering plane
for a P-P raindrop with g, = 3.25 mm, wheie gy is the radius
of a sphere with the same volume as the deformed P-P drop,
at frequencies greater than about 6 GHz. The differential scatter-
ing characteristics of two P-P drops of equivolumic sizes a, =
3 and 3.5 mm at frequencies of 6 and 33 GHz and for a raindrop
temperature of 10° C are shown in Fig. 4. The first frequency
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FIG. 1. Plots of normalized differential scattering cross-section patterns for displaced, homogeneous dielectric spherical scatterers: (a) ka = 25.1327,
g, =10 + j3, dfa = 04; (b) kya = 50.2654, g, = 5, dla = 0.2

was selected because of the ability of the EBCM to provide a FEM. For comparison purposes, in Fig. 5 the amplitude and
convergent solution when g; = 3 mm while the second one phase of the forward and backward scattering amplitude func-
has been chosen since it is the highest frequency for which tions of the 13 P-P raindrops in a fixed orientation, 8, = ¢, =
Fang and Lee [13] have published tabulated results for the 90° obtained from the GPMT are displayed as a function of
forward and backward scattering amplitude functions using the  the equivolumic spherical raindrop radius in the range from 0.25
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FIG. 2. Plots of normalized differential scattering cross-section patterns for an oblate spheroidal raindrop with an equivolumic spherical radins = 3.25%
mm and axial ratio = 0.675 at a frequency of 300 GHz: (a} 7, = 0° and 90°; (b) 1, = 0°. Main (co-)polarization is parallel to the scattering (xz) plane.
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F1G. 3. Plots of normalized differential scattering cross-section patterns for lossless homogeneous prolate spheroidal scatterers with g, = 2.25: (a) kya =

30 (b) ko = 37.699.
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to 3.5 mm for parallel and perpendicular incident polarizations,
along with the results of the FEM [13] at a frequency of 33
GHz and a raindrop temperature of 10° C, where a high de-
gree of agreement is apparent for both the amplitude and the
phase of the forward and backward scattering amplitude func-
tions.

The final class of homogeneous nonspherical scatterers,
which has received comparatively little attention in the literature
[14, 15]) involved Chebyshev particles. Mugani and Wiscombe
[14] utilized the EBCM and Kiehl ef al. [15] applied the first-
order perturbation theory to investigate EM scattering from
rotationally symmetric nonspherical Chebyshev particles with
surfaces parameterized by

r® = all + AT, {cos 8}, )

where A is the deformation parameter ([A| < 1), a, is the
radius of the unperturbed sphere and 7, {cos 6} is the nth-order
Chebyshev polynomial.

As has been observed in the P-P raindrop scattering computa-
tions, we have also encountered consistently repeated numerical
overflow problems in the EBCM with a convergence criterion of
1% no longer being achieved over 80% of 10 selected scattering
angles, 8, in the range from 0° to 180°, particularly when the
size parameter kya, exceeded about 10, even for particles with
n = 3. Similarly Kiehl, et al. [15] found that the accuracy of the

extinction efficiency evaluated from the first-order perturbation
theory for A = 0.1, n = 2 degraded significantly when kay >
6. It should be mentioned that the convergence rate of the
extinction efficiency is usually faster in both the GPMT and
EBCM as compared to scattering in other directions. On the
other hand, the GPMT which has not been previously employed
to treat scattering by such particle shapes, was found to give
very satisfactory numerical performance with excellent
agreement being achieved with the cases that could be handled
by the EBCM and it also provided a converged solution with
a convergence criterion of 0.1% or better for cases in which it
was not possible to achieve convergence by the EBCM. Typical
examples of our numerical computatiens are shown in Figs. 6
and 7, where a relative electrical constant of 2.2496 + j0.06
is assumed [14], which is representative of some maritime
aerosols in the near-visible frequency range. The parameters
associated with the homogeneous dielectric test cases, as well
as the various cross sections of interest are summarized in
Table 1.

2. TWO-LAYERED SCATTERERS

Since the capability of the GPMT to treat EM scattering from
a wide range of homogeneous nonspherical scatterer shapes has
been demonstrated, attention is next focused on examining the
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FIG. 6. Plots of normalized differential scattering ¢ross-section patterns for a 73(0.1) Chebyshev particle with a size parameter of kya, = 10: (¢) 5 = 0°,
matn {co-)polarization is parallel to the scattering (xz) plane; (d} 7, = 90°, main (co-)polarization is perpendicular to the scattering (xz) plane.

analytical formulations and numerical algorithms developed in
[ 1] specifically for cases involving scattering from rotationally
symmetric, PC or dielectric objects, embedded in an axisym-
metric dielectric body, which as far as the GPMT is concerned,
represents an extension which has neither been developed nor
tested so far.

The scattering from concentrically coated spheres with both

lossy (g, = 0+ j1} and lossless (g, = 2) dielectric core
materials is considered since there exists an analytical solution
via the extended Mie theory [3] for comparison purposes. In
all cases to be considered, the size parameter of the outer sphere
is fixed at kyao = 2, where 4; is the radius of the outer sphere,
while two values are chosen for the size parameter of the inner
sphere, (kya; = 0.25 and 1.8). The coat material is assumed to
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main {co-Jpolarization is parallel 1o the scattering (xz) plane; (d) 7 = 90°, main (co-)polarization is perpendicular to the scattering (xz) plane.

be either a Jossy dielectric with g, = 4 + j2 or a'lossless one
with &, = 4. Instead of considering the origin of the local
frame to be coincident with the corresponding origin of the
principal frame, an assumption which is usually made when
this simple geometry is used for testing most of the numerical
techniques for inhomogeneous scatterers [16-20], the accuracy
of the proposed method will be demonstrated for cases in which

displacements of (.54; and 0.4a, are assumed for the thick and
thin coats, respectively, where a, is the radius of the inner
sphere. The numerical results for the normalized differential
scattering cross-section patterns and the various scattering effi-
ciencies are depicted in Fig. 8 and Table II.

In the following, the GPMT is used to treat EM scattering
from an eccenirically stratified PC sphere embedded in a spheri-
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TABLE 1

Normalized Extinction, Scattering, and Backscattering Cross
Sections of the Homogeneous Dielectric Test Cases

Nusmerical
Figure method Q. /ma QJfrat Oylna®
1{a) Mie theory 22181 1.4046 0.3022
GPMT 22176 1.4045 0.3023
I{b) Mie theory 2.1260 2.1260 6.8353
GPMT 2.1260 2.1259 6.8388
2 GPMT 47615 2.8444 1.0865
EBCM 4.7616 2.8445 1.0855
3{a) GPMT 0.5041 0.5019 0.3213
3(b) GPMT 0.8740 0.8704 0.2109
6(a) GPMT 2.4743 1.8928 1.4199
EBCM 2.4743 1.8927 14204
o(b)y GPMT 2.3260 1.6511 1.6622
EBCM 2.3256 16511 1.6609
GPMT 2.2747 £.5936 1.6994
EBCM 2.2745 [.5937 1.6949
T(a) GFMT 2.7531 1.9832 38164
EBCM 27533 1.9330 3.8238
7b) GPMT 2.7912 2.0604 29344
EBCM 27913 2.0604 2.9260
GPMT 27032 1.9978 0.0580
EBCM 2.7032 1.9978 0.0598

cal dielectric coating, a problem which has received compara-
tively little attention in the lterature [16, 21]. Fikioris and
Uzunoglu {21] utilized the method of separation of variables
while Strom [16] used the EBCM formulation to solve this
problem, both in conjunction with the translational addition
theorems for the spherical vector wavefunctions, an approach
which eventually leads to rather tedious related expressions. In
our GPMT approach, the coordinate system is chosen such that
the origin of the local frame of the scatterer is fixed at the
center of the inner sphere and the z'-axis points in the direction
of propagaticn of the incident wave. Hence, the surface of the
outer sphere appears to be nonspherical while the scatterer is
rotationally symmetric about the axis of propagation of the
incident plane wave.

In Fig. 9 the extinction and backscattering cross sections,
normalized by wa®, where a is the radius of the outer sphere,
are presented as functions of the normalized intercenter dis-
placement d/a, where d is the distance between the center of
the spheres, (b/a — 1) = d/a = (1 — b/a) and b is the radius
of the inner sphere £, = 4, a/b = 3 for two size parameters
of the outer sphere, kya = 3 and 3.375. Two orientations are
of the local frame of the scatterer have been considered. In the
first, the elevation and aximuthal orientations are 6, = ¢y =
0° and hence the scattered electric field vector is always polar-
ized in the same direction of the incident wave, while in the
second, B, = ¢ = 90°, where two independent polarization
vectors are considered as either parallel (in the &, direction) or
perpendicular (in the a, direction).
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Having verified the validity of the proposed method for scat-
tering from homogeneous as well as concentrically and eccentri-
cally stratified spherical scatterers, attention will next be fo-
cused on treating scattering {rom several arbitrarily shaped
axisymmetric dielectric obstacles coated with dielectrics of ar-
bitrary thickness. Numerical results are presented for some
selected scatterers since the number of possible combinations
is large, depending on the dielectric properties, size and shape
of the core and shell regions, as well as on the incidence and
polarization directions of the exciting field. Whenever possible,
our results are compared against those obtained by an indepen-
dent pumerical method based on the generalization of the
EBCM to multilayered nonspherical objects [5], using the sin-
gle-particle scattering code which has been kindly provided to
us by Professor Barber of Clarkson College and others obtained
from the RGD approximation [6]. In Figs. 10 through 15 the
normalized differential scattering cross-section patterns are
shown from some selected two-layered spheroidal objects, the
parameters of which are summarized in Table III. In order to
satisfy the two basic criteria of the RGD approximation, the
relative dielectric constants of the core and coat materials are
both assumed to be real (Qh' = 0) and close to that of the
surrounding medium.

As previously mentioned, only cases in which the RGD
approximation is valid and/or the EBCM yielded a convergent
solution are shown for comparison purposes. Although the nu-
merical results obtained from the EBCM for cases 1 and 4 have
been displayed in Figs. 10 and 13, respectively, it should be
mentioned that it was eventually impossible to achieve a conver-
gent solution for the differential scattering cross sections over
the entire scattering plane, particularly when 6 = 50°, 70°,
90°, 100°, 110°, 120°, and 180°. In fact similar problems have
been encountered in general for nonspherical scatterers of large
size parameters (k,a; = 6), in particular when a,/b, (or a./b;)
= 2 and/or a/b, (Or a,/b,y) = 0.6,

As is apparent from the results of these tests, a high degree
of agreement has been achieved between the results obtained
from GPMT, RGD, and EBCM, with the exception of those
cases at scattering angles corresponding to deep nulls, where
the effects of accumulated roundoff errors are more notice-
able.

Barber and Wang [22] investigated the range of validity of
the RGD approximation for homogeneous nonspherical scatter-
ers by performing scattering calculations for a set of arbitrarily
as well as randomly oriented prolate spheroids using the EBCM,
the results of which were compared to those cobtained by the
RGD approximation. However, similar comparisons have not
yet been made for the case of two-layered nonspherical scat-
terers. It should be pointed out that, although the maximum
errors in the RGD approximation occur at scattering angles
corresponding to the deep nulls in the differential scattering
pattern (the RGD approximation invariably yields zero for
these minima), the positions of these nulls are very well pre-
dicted.
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To examine the applicability of the GPMT in the context of
two-layered lossy dielectric scatterers, the angular scattering
characteristics of partially melted, oblate spheroidal ice-stone
models with a,/b; = a,/b; = 2/3 and /b, = a,/b, = 0.8 are
shown in Figs. 16 and 17, respectively at a frequency of 3
(GHz. Table IV summarizes the parameters associated with the
two models, as well as the normalized extinction, scattering,
and backscattering cross sections.

© 7= 0% () 7= 90°

It should be pointed out that most of the currently available
numerical methods considered either PC obstacles embedded
in a dielectric body [17-19] or two-layered lossless dielectric
objects {17, 19, 20]. As can be seen from the results of these
tests, excellent agreement has been achieved where typical
differences between the GPMT and EBCM are less than 1%
and thus verifying the validity of the GPMT for predicting the
scattering properties of water-coated ice particles not only in
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TABLE TI

Normalized Extinction, Scattering, and Backscattering Cross Sections of Concentrically Coated Dielectric Spheres

Extended Mie theory GPMT solution
Core Coat
region region Q.jua3 Q.fuat Qulmal dla, Q.Jmwa} Q./ral Qi tral
gn =2+l 8, =4 + j2 3.2999 1.6448 (.1421 0.5 3.2999 1.6448 (11421
fpery = 0.25 kea, = 2
g =24+l Ea =4 +j2 2.5580 1.1473 0.1018 0.4 2.5585 1.1477 0.1018
koay = 1.8 kyan = 2
gy =2 g; = 4 4.7644 4.7644 1.4337 0.5 4.7644 4.7643 1.4338
ka, = 0.25 koay = 2
£n =12 &g, =4 2.0756 2.0756 0.6658 0.4 2.0756 2.0756 0.6658
koay = 1.8 koay = 2
kpa=3 kea=3
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TABLE II1

Normalized Extinction and Backscattering Cross Sections of Two-Layered Spheroidal Biclogical Models

Numerical
Figure Core region Coat region & &y T method O.fmal Ovlmal
1o ko = 12.5891 ka, = 12.0952 ¥ 0 0°, 90° GPMT 0.2089 1.292] % 107
afb, = 188 wdb, = 188 EBCM 0.2002 —
Ve, = 1.045 Ve, = 1.008 90 90° 90" GPMT 0.1196 1.4452 X 107!
ERCM 0.1182 —_
90° 90° 1 GPMT 0.1148 1.6368 X 107
ERCM 0.115% —
i kea, = 0.6283 koay = 1.2566 o 0° 0°, 9P GPMT 27998 X 107 1.5265 % 10~
alb, =2 axlb, = 2 EBCM 2.7962 X 107 1.5314 % 107
Ve, = 1.04 Ve, = 105 RGD 2.8444 % 107 1.6325 X 107
90° 90° op° GPMT 3.6576 X 107 4.8331 X 107
EBCM 37166 % 107 49260 % 107
) RGD 3.5753 X 107 49681 X 107
o° o o GPMT 33674 X 107 4.6825 > 107
EBCM 3,3599 x [0~ 4,6647 X 107
RGD 3.1840 X 107 49681 % 10~
12 koay = 1 kg = 2 w o o, 90° GPMT 40311 X 107 20003 X 107
alb, = 2 aylh, = 2 EBCM 40280 % 107 2.1202 X 1079
Ve, = 1.045 Ve, = 1.098 RGD 40324 % 107} 33119 X 1675
90° 90° 90° GPMT 6.4308 % 107 6.5514 X 107
EBCM £.4339 x 107 6.5546 X 107
RGD 5.6967 X 10 6.5558 X 107
90° 90° e GPMT 50517 X 107 57478 X 107
EBCM 50482 X 1077 57344 X 107
RGD 44182 x 107 6.5558 x 107
13 keai = 5.6548 Koy = 6.2831 o g 0°, o0F° GPMT 24377 % 107 1.9476 % 107
adbil =2 b, =2 EBCM 2.4388 > 1072 -
Ve, = 1.04 Ve, =103 90° 90° 90° GPMT 17483 X 107 14076 % 107
EBCM 1.7410 X 107 —
90° y(r o GPMT 1.5202 % 1072 1.4336 % 107
EBCM 15221 % 1072 —
14 k= 0.6283 ked: = 1.2566 o o 0°, 90° GPMT 1.1549 X% 10~ 6.2404 X 10°
aibi = 250 b, =25 EBCM 11569 % 1o 62193 % 10°°
Ve, = 1.04 Ve, = 1.05 . RGD 1.1894 X 107 6.6868 X 107
90° 90 ae GPMT 1.3557 X 10~ 21507 X 107
EBCM 16065 X 107 22834 % 107
RGD 1.5306 X 10~ 22961 X 107
90° 90° 0° GPMT 14240 X 107 2,1353 X 10~
ERCM 1.4285 x 107 2.1381 X 107
RGD 13554 X 10~ 22961 % 107
15 ke = 1 Kooy = 2 0° o 0°, %W° GPMT 8.2797 % 107 58871 % 107
afh = 3 by =3 EBCM 8.2953 x 10~ 50106 x 10
e = 1.045 Ve, = 1.098 RGD 8.6606 % 107 6.5420 % 10°*
90° 90° 90° GPMT 1.4475 X 107 1.9926 x 107
EBCM 1.5948 X 1072 22640 X 107
RGD 1.3282 X 107 2.1839 x 10!
90° 90° % GPMT 1.1500 X 107 1.8717 X 107
EBCM 11774 X 107 19141 % 107

RGD 1.0207 X 1073 2.1839 x 1072
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the forward and backward scattering directions, as has been
usually the case in the literature [21], but rather over the whole
angular scattering pattern.

III. CONCLUSION

This paper has provided several calculations of the differen-
tial scattering cross-section patterns and the various cross sec-
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tions of interest for two orthogonal incident polarization direc-
tions of the incident field vector in order to validate the
feasibility and applicability of the GPMT as a simple and effec-
tive tool for solving a wide class of EM scattering problems.
Initially, a number of homogeneous lossy offset spheres, oblate
and prolate spheroids, the theoretical raindrop shapes of Prup-
pacher and Pitter [9], as well as Chebyshev particles [14, 15]
were considered. The scattering results thus obtained are com-
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FIG. 15. Plots of normalized differential scattering cross-section patterns for a two-layered object: a,/b, = awfb; = 3, kyay = 1, &, = 1092025, kya, =

2, &, = 1.205604.

pared, whenever possible, against those evaluated from the Mie
theory [2] and the EBCM [4]. In all of the cases considered,
the comparisons of results were surprisingly good, considering
the diversity of the methods utilized. As far as scatterer geome-
tries which do not possess a mirror symmetry in the direction
of the normal to the axis of revolution are concerned, the
homogeneous GPMT was found to be superior to the EBCM,

a conclusion which contradicts the claim of Yeh et al. [10].

For example, the EBCM was found to be unable to provide a-
convergent solution over the entire scattering plane for a P-P

raindrop with an equivolumic spherical radius of 3.25 mm, even

at a frequency of 6 GHz, while the GPMT yielded convergent

solutions for all 13 P-P raindrop shapes for frequencies up to

at least 200 GHe.
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FIG. 16. Plots of normalized differential scattering cross-section patterns of a partially melted, oblate spheroidal hailstone model at a frequency of 3 GHz:
athy, = alby = 2/3, @y = 22.8942 mm, a, = 30.5257 mm: (¢) n = 0°, main (co-)polarization is parallel to the scattering (xz) plane; {d) = 90°, main

{cojpolarization is perpendicular 1o the scattering {xz} plane.

To examine the applicability of the GPMT in the context of
rotationally symmetric, PC, or dielectric obstacles embedded
in an axisymmetric lossy or lossless dielectric objects, the dif-
ferential scattering cross-section patterns and the various
cross sections have been evaluated for two orthogonal incident
polarization directions for many scatterer geometries of practi-

cal significance and are presented, starting initially with the
preliminary cases of two concentric spheres consisting of dif-
ferent lossy and lossless dielectrics. Excellent agreement has
been achieved with the exact solutions [3] and with those ob-
tained from the layered EBCM code [5] and this demonstrates
the excellent inherent accuracy and convergence of the GPMT.
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FIG. 17. Plots of normalized differential scattering cross-section patterns of a partially melted, oblate spheroidal hailstone model at a frequency of 3 GHz:
mib, = b, = 0.8, @, = 22.8942 mm, @, = 30.5257 mm. 1, = 0°, main (co-)polarization is parallel to the scattering (xz) plane; {(d) % = 90° main

(co)polarization is perpendicular to the scattering {xz) plane.

Another important example of the application of the GPMT,
which circumvents the use of translational addition theorems
for spherical vector harmonics as employed in [16, 21] and,
hence, does not require massive analytical and programming
efforts while still preserving the computational accuracy and
emphasizes the efficiency of the method and its versatility,

is the problem of plane EM scattering from an eccentricaily
stratified PC sphere embedded in a spherical dielectric coating.
Finally, the GPMT has been successfully employed to infer
the angular scattering patterns of axisymmetric lossy dielectric
obstacles coated with lossy dielectrics of arbitrary thickness
as models for water-coated, ice-phase hydrometeors.
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TABLE IV

Normalized Extinction, Scattering and Backscattering Cross Sections of Partially Melted, Oblate Spheroidal
Hailstone Models at a Frequency of 3 GHz

(1982).

Numerical
Care Coat [N dy Ty method Qlnai QJTai O fmal
a_2 a_2 0° 0° 0°, 90° GPMT 5.3036 4.1364 5.4901
b 3 b, 3 EBCM 5.2925 4.1366 5.5058
-ay = 228942 mm a; = 30.5257 mm 90° 90° 90° GPMT 2.9737 1.9218 0.5136
EBCM 2.9729 1.9230 0.5130
20° 90° o° GPMT 4.6173 3.2879 0.2454
EBCM 4.6168 32891 0.2423
4 o3 @ _ e 0° 0° Q°, 90° GPMT 3.9337 3.0690 24534
b b, EBCM 3.9345 3.0691 2.4512
a; = 22.8942 mm a; = 30.5257 mm 90" 90° 90° GPMT 2.8406 2.t164 1.7493
EBCM 2,8397 2.1163 1.7483
90° 90° 0° GPMT 3.5762 2.7660 1.9576
EBCM 35759 27660 1.9595
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